Structure Reports

Online
ISSN 1600-5368

Sehriman Atalay, ${ }^{\text {a }}$ Nazan Ocak Ískeleli, ${ }^{\text {a }}$ Erbil Ağar ${ }^{\text {b }}$ and Nesuhi Akdemir ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Art and Science Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.057$
$w R$ factor $=0.144$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(2-Bromo-4-chlorophenoxy)phthalonitrile

The title phthalonitrile derivative, $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{BrClN}_{2} \mathrm{O}$, contains two aromatic rings, which are almost perpendicular.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally substituted phthalocyanine complexes and subphthalocyanines (McKeown, 1998; Leznoff \& Lever, 1989-1996). Pthalocyanines possess some remarkable properties which render them important commercial commodities. In the last few years, a great deal of interest has been focused on the synthesis of phthalocyanine derivatives due to their applications in many fields, such as chemical sensors, electrochromism, batteries, semiconductive materials, liquid crystals, non-linear optics and photodynamic therapy (PDT) (Leznoff \& Lever, 1989-1996).

(I)

An ORTEPIII (Burnett \& Johnson, 1996) plot of the title compound, (I), is shown in Fig. 1. The lengths of the two $\mathrm{C} \equiv \mathrm{N}$ triple bonds (Table 1) are consistent with those found in similar compounds (Atalay et al., 2003; Ískeleli \& Ağar, 2005). The $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{Cl}$ distances are close to the values reported for 4-(3-bromobenzylideneamino)-3-(4-chlorobenz-yl)-4,5-dihydro-1H-1,2,4-triazol-5-one (Atalay et al., 2004). The two aromatic rings in the molecule are almost perpendicular; the dihedral angle between ring A (atoms $\mathrm{C} 3-\mathrm{C} 8$) and ring B (atoms C9-C14) is 88.0 (3).

Experimental

2-Bromo-4-chlorophenol $(1.40 \mathrm{~g}, \quad 6.75 \mathrm{mmol})$ and 4-nitrophthalonitrile ($1.1 \mathrm{~g}, 6.36 \mathrm{mmol}$) were dissolved in dry dimethylformamide $(40 \mathrm{ml})$ with stirring under N_{2} at 323 K . Dry finepowdered potassium carbonate $(2.0 \mathrm{~g}, 14.50 \mathrm{mmol})$ was added in portions $(14 \times 1 \mathrm{mmol})$ every 10 min . The reaction mixture was stirred for 48 h at 323 K and poured into ice-water (300 g). The product was filtered off and washed with $10 \%(w / w) \mathrm{NaOH}$ solution and water until the filtrate was neutral. Recrystallization from ethanol gave a white product (yield $1.42 \mathrm{~g}, 73.96 \%$). Single crystals were obtained from absolute ethanol at room temperature by slow evaporation (m.p. 407-408 K).

Received 30 June 2005
Accepted 1 July 2005
Online 23 July 2005

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{BrClN}_{2} \mathrm{O}$
$M_{r}=333.57$
Orthorhombic, Pbca
$a=14.2841$ (14) \AA
$b=8.3753$ (5) A
$c=22.353(2) \AA$
$V=2674.2(4) \AA^{3}$
$Z=8$
$D_{x}=1.657 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.192, T_{\text {max }}=0.523$
22144 measured reflections
2634 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.144$
$S=1.05$
2634 reflections
172 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 21214
reflections
$\theta=1.8-27.2^{\circ}$
$\mu=3.27 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.64 \times 0.34 \times 0.19 \mathrm{~mm}$

1468 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.102$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-17 \rightarrow 17$
$k=-10 \rightarrow 10$
$l=-27 \rightarrow 27$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0548 P)^{2}\right. \\
& \quad+2.1953 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 14$	$1.874(7)$	$\mathrm{C} 5-\mathrm{O} 1$	$1.367(6)$
$\mathrm{Cl} 1-\mathrm{C} 12$	$1.752(6)$	$\mathrm{O} 1-\mathrm{C} 9$	$1.395(7)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.128(6)$	$\mathrm{C} 2-\mathrm{N} 2$	$1.140(7)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{C} 9$	$119.2(4)$		

H atoms were positioned geometrically and treated using a riding model [atomatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$].

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X $A R E A$; data reduction: X-RED32; program(s) used to solve struc-

Figure 1
An ORTEPIII drawing (Burnett \& Johnson, 1996) of the title compound showing the atomic numbering. Displacement ellipsoids of non-H atoms are drawn at the 20% probability level.
ture: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o111101112.

Atalay, Ş., Yavuz, M., Kahveci, B., Ağar, E. \& Şaşmaz, Ş. (2004). Acta Cryst. E60, o2119-o2121.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C.\& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols. 1, 2, 3 and 4. Weinheim/New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Ískeleli, N. O. \& Ağar, A. (2005). Acta Cryst. E61, o158-o159.

